Measuring individual vulnerability to floods in the lower and middle Grijalva River Basin, Tabasco, Mexico
Gurri García, Francisco D [autor] | Ruiz García, Wilma [autor] | Molina Rosales, Dolores Ofelia [autora] | Vallejo Nieto, Mirna Isela [autora].
Tipo de material: Artículo en línea Tipo de contenido: Texto Tipo de medio: Computadora Tipo de portador: Recurso en líneaTema(s): Inundaciones | Vulnerabilidad ante desastres | Unidades domésticas | Adaptación socialTema(s) en inglés: Floods | Disaster vulnerability | Domestic unit | Social adjustment | Paraiso, Jalpa de Mendez Tabasco (Mexico)Descriptor(es) geográficos: Paraíso, Jalpa de Méndez Tabasco (México) | Cuenca Grijalva Nota de acceso: Disponible para usuarios de ECOSUR con su clave de acceso En: Natural Hazards. Volumen 96, número 1 (March 2019), páginas 149-171. --ISSN: 0921-030XNúmero de sistema: 59185Resumen:Tipo de ítem | Biblioteca actual | Colección | Signatura | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|
Artículos | Biblioteca Electrónica Recursos en línea (RE) | ECOSUR | Recurso digital | ECO400591854755 |
Disponible para usuarios de ECOSUR con su clave de acceso
We built an easy-to-interpret individual vulnerability index to floods that is amenable for empirical testing and may be adapted to any perceived hazard or ecological setting. An individual's vulnerability value (Vi) was estimated from characteristics unique to him/her, added to those he or she shared with people sleeping in the same building, then by all members of his or her household and finally by all community members. Vi was obtained for 994 individuals living in 129 domestic units in 14 rural populations from three subregions in the Grijalva River Basin, Tabasco, Mexico. The Vi means of Wetland subregion communities were significantly lower than those of Mountain and Coastal Plain regions. Bivariate correlations allowed us to identify those variables that had a greater influence on the estimation of Vi in general, and which correlated most with Vi per region. Knowing which variables increased vulnerability allowed us to make policy suggestions to target each region's specific needs. We argue that this bottom-up approach gives the index a value that reflects individual conditions and interactions that affect vulnerability that other indices derived from larger aggregation-level data are incapable of providing. eng