Vista normal Vista MARC

Diversity and interactomics of bacterial communities associated with dominant trees during tropical forest recovery

Becerra Lucio, Ángel Antonio [autor] | Labrín Sotomayor, Natalia Ysabel [autora] | Becerra Lucio, Patricia Alejandra [autora] | Trujillo Elisea, Flor Itzel [autora] | Chávez Bárcenas, ‪Ana Tztzqui [autora] | Machkour M'Rabet, Salima [autora] | Peña Ramírez, Yuri Jorge Jesús [autor].
Tipo de material: Artículo
 en línea Artículo en línea Tipo de contenido: Texto Tipo de medio: Computadora Tipo de portador: Recurso en líneaTema(s): Tabebuia rosea | Handroanthus chrysanthus | Rizosfera | Bacterias del suelo | Recuperación de tierras | Bosques tropicales | Ecología de suelosTema(s) en inglés: Tabebuia rosea | Handroanthus chrysanthus | Rhizosphere | Soil bacteria | Reclamation of land | Tropical forests | Soil ecologyDescriptor(es) geográficos: Calakmul (Campeche, México) Nota de acceso: Disponible para usuarios de ECOSUR con su clave de acceso En: Current Microbiology. Volumen 78, número 9 (July 2021), páginas 3417-3429. --ISSN: 2319-7706Número de sistema: 61279Resumen:
Inglés

Bacterial communities have been identified as functional key members in soil ecology. A deep relation with these communities maintains forest coverture. Trees harbor particular bacteriomes in the rhizosphere, endosphere, or phyllosphere, different from bulk-soil representatives. Moreover, the plant microbiome appears to be specific for the plant-hosting species, varies through season, and responsive to several environmental factors. This work reports the changes in bacterial communities associated with dominant pioneer trees [Tabebuia rosea and Handroanthus chrysanthus [(Bignoniaceae)] during tropical forest recovery chronosequence in the Mayan forest in Campeche, Mexico. Massive 16S sequencing approach leads to identifying phylotypes associated with rhizosphere, bulk-soil, or recovery stage. Lotka–Volterra interactome modeling suggests the presence of putative regulatory roles of some phylotypes over the rest of the community. Our results may indicate that bacterial communities associated with pioneer trees may establish more complex regulatory networks than those found in bulk-soil. Moreover, modeled regulatory networks predicted from rhizosphere samples resulted in a higher number of nodes and interactions than those found in the analysis of bulk-soil samples.

Recurso en línea: https://doi.org/10.1007/s00284-021-02603-9
Lista(s) en las que aparece este ítem: AHMRET-Campeche
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Estado Fecha de vencimiento Código de barras
Artículos Biblioteca Electrónica
Recursos en línea (RE)
ECOSUR Recurso digital ECO40000061279

Disponible para usuarios de ECOSUR con su clave de acceso

Bacterial communities have been identified as functional key members in soil ecology. A deep relation with these communities maintains forest coverture. Trees harbor particular bacteriomes in the rhizosphere, endosphere, or phyllosphere, different from bulk-soil representatives. Moreover, the plant microbiome appears to be specific for the plant-hosting species, varies through season, and responsive to several environmental factors. This work reports the changes in bacterial communities associated with dominant pioneer trees [Tabebuia rosea and Handroanthus chrysanthus [(Bignoniaceae)] during tropical forest recovery chronosequence in the Mayan forest in Campeche, Mexico. Massive 16S sequencing approach leads to identifying phylotypes associated with rhizosphere, bulk-soil, or recovery stage. Lotka–Volterra interactome modeling suggests the presence of putative regulatory roles of some phylotypes over the rest of the community. Our results may indicate that bacterial communities associated with pioneer trees may establish more complex regulatory networks than those found in bulk-soil. Moreover, modeled regulatory networks predicted from rhizosphere samples resulted in a higher number of nodes and interactions than those found in the analysis of bulk-soil samples. eng

Con tecnología Koha