Land evaluation and carbon flux estimation to reinforce natural protected areas a case study in Southern Mexico
Tipo de material:
- Texto
- Computadora
- Recurso en línea
- Emisiones de carbono
- Carbon emissions
- Captura de carbono
- Carbon sequestration
- Cambio de uso de la tierra
- Land use change
- Servicios ecosistémicos
- Ecosystem services
- Sistemas agroforestales
- Agroforestry systems
- Calidad del suelo
- Soil quality
- Zona Sujeta a Conservación Ecológica Balam-Kú (Campeche, México)
- Zone Subject to Ecological Conservation Balam-Ku (Campeche
- Calakmul (Campeche, México)
- Calakmul (Campeche, Mexico)
- Ciencias agropecuarias y biotecnología Ciencias agrarias Agronomía -- Producción de cultivos
- Artfrosur
Tipo de ítem | Biblioteca actual | Colección | Estado | Código de barras | |
---|---|---|---|---|---|
Artículos | Biblioteca Electrónica Recursos en línea (RE) | ECOSUR | Recurso digital | ECO400000060716 |
Disponible para usuarios de ECOSUR con su clave de acceso
Forest-protected areas contribute to sequestration of CO2, but its establishment in regions where human settlements already exist conficts with food production. There is a need to develop tools for evaluating the sustainability of land use options in such areas. The objective of the present study was to work out a procedure based on land evaluation and scenario analyses. It was tested in a study area, which is a part of a terrestrial reserve in southeastern Mexico. Requirements for agriculture and forest were matched against the variability in land characteristics to outline physical suitability for current and potential use of land. The efect on C-fux of seven scenarios with diferent degrees of contribution from areas of agriculture and forest in relation to current land use intensity and proportions (24% agriculture) was estimated. The scenarios were: (1) conversion of forest to agriculture (+24%), (2) improved land conditions by application of fertilizers (±0% agriculture), (3) conversion of agriculture to forest (+12%), (4) as (1) with improved land conditions, and (5), (6), (7) as (2), (3) and (4), respectively, but with silvopastoral/agroforestry system in agriculture area. After 20 years, in relation to the start (year 0), baseline (continuation of current land use) showed a sequestration of 10356.5 Gg CO2, scenario 1 an emission of 230.1 Gg and scenario 2–7 sequestrations of 2998.5–14958.0 Gg. The methodology is promising and can be used as a framework for applications at diferent scales. Inglés