Logo CONACYTCONACYTECOSUR

el colegio de la frontera sur

Vista normal Vista MARC

The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae

Por: Colaborador(es): Tipo de material: ArtículoArtículoIdioma: Inglés Tema(s): Clasificación CDD:
  • AR/595.771 B6
Formatos físicos adicionales disponibles:
  • Disponible en línea
En: Medical and Veterinary Entomology volumen 18, número 1 (March 2004), páginas 50-56Resumen: Spinosad is a naturally derived biorational insecticide with an environmentally favourable toxicity profile, so we investigated its potency against mosquito larvae (Diptera: Culicidae). By laboratory bioassays of a suspension concentrate formulation of spinosad (Tracer1), the 24 h lethal concentration (LC50) against Aedes aegypti (L.) third and fourth instars was estimated at 0.025 p.p.m. following logit regression. The concentration-mortality response of third- and fourth-instar Anopheles albimanus Weidemann did not conform to a logit model. The LC50 value of spinosad in Anopheles albimanus was 0.024 p.p.m. by quadratic linear regression. A field trial in southern Mexico demonstrated that spinosad 1 p.p.m. compared with the standard temephos (Abate1) 1% granules 100 g/m3 water prevented Ae. aegypti breeding in plastic containers of water for 8 weeks; at 10 p.p.m. spinosad prevented breeding for >22 weeks.Resumen: In another field trial, spinosad at 5 p.p.m. and temephos both completely eliminated reproduction of Ae. aegypti for 13 weeks. In contrast, the bacterial insecticide Bacillus thuringiensis var. israelensis (Bti, Vectobac1 AS) performed poorly with just 2 weeks of complete inhibition of Ae. aegypti breeding. Spinosad also effectively prevented breeding of Culex mosquitoes and chironomids in both trials to a degree similar to that of temephos. We conclude that spinosad merits evaluation as a replacement for organophosphate or Bti treatment of domestic water tanks in Mesoamerica. We also predict that spinosad is likely to be an effective larvicide for treatment of mosquito breeding sites.
Lista(s) en las que aparece este ítem: Williams Trevor
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)

Disponible para usuarios de ECOSUR con su clave de acceso

Spinosad is a naturally derived biorational insecticide with an environmentally favourable toxicity profile, so we investigated its potency against mosquito larvae (Diptera: Culicidae). By laboratory bioassays of a suspension concentrate formulation of spinosad (Tracer1), the 24 h lethal concentration (LC50) against Aedes aegypti (L.) third and fourth instars was estimated at 0.025 p.p.m. following logit regression. The concentration-mortality response of third- and fourth-instar Anopheles albimanus Weidemann did not conform to a logit model. The LC50 value of spinosad in Anopheles albimanus was 0.024 p.p.m. by quadratic linear regression. A field trial in southern Mexico demonstrated that spinosad 1 p.p.m. compared with the standard temephos (Abate1) 1% granules 100 g/m3 water prevented Ae. aegypti breeding in plastic containers of water for 8 weeks; at 10 p.p.m. spinosad prevented breeding for >22 weeks. Inglés

In another field trial, spinosad at 5 p.p.m. and temephos both completely eliminated reproduction of Ae. aegypti for 13 weeks. In contrast, the bacterial insecticide Bacillus thuringiensis var. israelensis (Bti, Vectobac1 AS) performed poorly with just 2 weeks of complete inhibition of Ae. aegypti breeding. Spinosad also effectively prevented breeding of Culex mosquitoes and chironomids in both trials to a degree similar to that of temephos. We conclude that spinosad merits evaluation as a replacement for organophosphate or Bti treatment of domestic water tanks in Mesoamerica. We also predict that spinosad is likely to be an effective larvicide for treatment of mosquito breeding sites. Inglés

Disponible en línea

Adobe Acrobat profesional 6.0 o superior e Internet