Logo CONACYTCONACYTECOSUR

el colegio de la frontera sur

Imagen de cubierta local
Imagen de cubierta local
Vista normal Vista MARC

Methodology to create geospatial MODIS dataset

Por: Colaborador(es): Tipo de material: ArtículoArtículoIdioma: Inglés Tipo de contenido:
  • Texto
Tipo de medio:
  • Computadora
Tipo de soporte:
  • Recurso en línea
Tema(s): Recursos en línea: En: Telematics and computing: 8th international congress, WITCOM 2019 Merida, Mexico, November 4–8, 2019 proceedings / Miguel Felix Mata-Rivera, Roberto Zagal-Flores, Cristian Barría-Huidobro (Eds.) páginas 25–33Resumen: Training and testing of algorithms used in computing for application in several studies, require datasets previously validated and labeled. In the case of satellite remote sensing, there are several platforms with large volumes of open source data. Aqua and Terra satellite platforms have available the sensor MODIS (Moderate-Resolution Imaging Spectroradiometer) which has available open access data forearth observation. Despite the facilities offered by the MODIS data platform, extracting data from a particular region for the construction of useful dataset requires an arduous work that includes manual, semiautomatic and automatic stages. The present study proposes a methodology for the construction of a geospatial dataset using MODIS sensordata. This methodology has been successfully implemented in the construction of dataset for the analysis of physical and biological variables in the Caribbean Sea, highlighting its application in the monitoring of Sargasso along the coastline of the state of Quintana Roo. Its application can be extended to any of the data and products offered by the MODIS sensor.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)

Disponible para usuarios de ECOSUR con su clave de acceso

Training and testing of algorithms used in computing for application in several studies, require datasets previously validated and labeled. In the case of satellite remote sensing, there are several platforms with large volumes of open source data. Aqua and Terra satellite platforms have available the sensor MODIS (Moderate-Resolution Imaging Spectroradiometer) which has available open access data forearth observation. Despite the facilities offered by the MODIS data platform, extracting data from a particular region for the construction of useful dataset requires an arduous work that includes manual, semiautomatic and automatic stages. The present study proposes a methodology for the construction of a geospatial dataset using MODIS sensordata. This methodology has been successfully implemented in the construction of dataset for the analysis of physical and biological variables in the Caribbean Sea, highlighting its application in the monitoring of Sargasso along the coastline of the state of Quintana Roo. Its application can be extended to any of the data and products offered by the MODIS sensor. Inglés

Haga clic en una imagen para verla en el visor de imágenes

Imagen de cubierta local