Vista normal Vista MARC

Environmental and ecological statistics with R / Song S. Qian

Por: Qian, Song S [autor/a].
Tipo de material: Libro
 impreso(a) 
 Libro impreso(a) Series Editor: Boca Raton, Florida: CRC Press Taylor & Francis Group, c2017Edición: Segunda edición.Descripción: xxiii, 535 páginas ; 24 centímetros.ISBN: 1498728723; 9781498728720.Tema(s): R (Lenguaje de programación para computadora) | Métodos estadísticos | EcologíaClasificación: 519.50285 / Q5 Nota de bibliografía: Incluye bibliografía: páginas 515-528 e índice: páginas 529-535 Número de sistema: 58417Contenidos:Mostrar Resumen:
Inglés

Emphasizing the inductive nature of statistical thinking, Environmental and Ecological Statistics with R, Second Edition, connects applied statistics to the environmental and ecological fields. Using examples from published works in the ecological and environmental literature, the book explains the approach to solving a statistical problem, covering model specification, parameter estimation, and model evaluation. It includes many examples to illustrate the statistical methods and presents R code for their implementation. The emphasis is on model interpretation and assessment, and using several core examples throughout the book, the author illustrates the iterative nature of statistical inference. The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model. Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.

Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Estado Fecha de vencimiento Código de barras
Libros Biblioteca Tapachula

Texto colocado en la configuración de la biblioteca Tapachula

Acervo General (AG)
Acervo General 519.50285 Q5 Disponible ECO020013687

Incluye bibliografía: páginas 515-528 e índice: páginas 529-535

I Basic Concepts.. Introduction.. A Crash Course on R.. Statistical Assumptions.. Statistical Inference.. II Statistical Modeling.. Linear Models.. Nonlinear Models.. Classication and Regression Tree.. Generalized Linear Model.. III Advanced Statistical Modeling.. Simulation for Model Checking and Statistical Inference.. Multilevel Regression.. Using Simulation for Evaluating Models Based on Statistical Signicance Testing.. Bibliography

Emphasizing the inductive nature of statistical thinking, Environmental and Ecological Statistics with R, Second Edition, connects applied statistics to the environmental and ecological fields. Using examples from published works in the ecological and environmental literature, the book explains the approach to solving a statistical problem, covering model specification, parameter estimation, and model evaluation. It includes many examples to illustrate the statistical methods and presents R code for their implementation. The emphasis is on model interpretation and assessment, and using several core examples throughout the book, the author illustrates the iterative nature of statistical inference. The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model. Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model. eng

Con tecnología Koha