Vista normal Vista MARC

Response of ground spiders to local and landscape factors in a Mexican coffee landscape

Rivera Marín, Linda Esmeralda [autora] | Philpott, Stacy M [autora] | De la Mora, Aldo [autor] | Ibarra Núñez, Guillermo [autor] | Tryban, Stephen [autor] | Perfecto, Ivette [autora].
Tipo de material: Artículo
 en línea Artículo en línea Tipo de contenido: Texto Tipo de medio: Computadora Tipo de portador: Recurso en líneaTema(s): Arañas | Población animal | Relaciones animal-planta | Cafetal | Sistemas agroforestales | Inga (Fabaceae) | Hábitat (Ecología)Descriptor(es) geográficos: Región Soconusco (Chiapas, México) Nota de acceso: Disponible para usuarios de ECOSUR con su clave de acceso En: Agriculture, Ecosystems and Environment. Volumen 222, (April 2016), páginas 80-92. --ISSN: 0167-8809Número de sistema: 58098Resumen:
Inglés

In order to secure the provisioning of ecosystem services, detailed analyses of the relationship between biodiversity and agriculture are required. We studied ground spider diversity in a 52 km² coffee landscape in Southern Mexico, and asked the following questions. (1) How do coffee management variables and local microhabitat variables change among coffee agroecosystems and forest sites and across seasons? (2) How does coffee management affect ground spider richness, abundance, and composition? (3) How do local and landscape factors in fl uence ground spider richness and abundance? and (4) What role does seasonality play in shaping ground spider communities? During the dry season and rainy season of 2011 we sampled ground active spiders using pitfall traps from high and low shade coffee agroecosystems (27 sites) and from forest (10 sites). On local scale, for each 20 m × 20 m site we measured leaf litter variables, invertebrate dry biomass, slope of the terrain and elevation, and management variables such as canopy cover, shade tree richness, shade tree density and proportion of Inga trees. At the landscape scale, we measured distance to the nearest forest and percent of forest in buffers of 500 m. Results show that agricultural management had a strong influence on spider richness and abundance. Across seasons, local spider richness and abundance had or tended to have higher values in the low-shade coffee. Spider richness and abundance were strongly in fl uenced by physiographic and local predictors and weakly by landscape predictors. Furthermore, predictors varied with seasonality, with slope of the terrain being the strongest predictor in the dry season and canopy cover being the strongest predictor in the rainy season. We conclude that ground active spiders in this coffee landscape are greatly in fl uenced by coffee management and local characteristics.

Recurso en línea: http://www.sciencedirect.com/science/article/pii/S0167880916300639
Lista(s) en las que aparece este ítem: Bibliografía DEAMP
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Estado Fecha de vencimiento Código de barras
Artículos Biblioteca Electrónica
Recursos en línea (RE)
ECOSUR Recurso digital ECO400580988431

Disponible para usuarios de ECOSUR con su clave de acceso

In order to secure the provisioning of ecosystem services, detailed analyses of the relationship between biodiversity and agriculture are required. We studied ground spider diversity in a 52 km² coffee landscape in Southern Mexico, and asked the following questions. (1) How do coffee management variables and local microhabitat variables change among coffee agroecosystems and forest sites and across seasons? (2) How does coffee management affect ground spider richness, abundance, and composition? (3) How do local and landscape factors in fl uence ground spider richness and abundance? and (4) What role does seasonality play in shaping ground spider communities? During the dry season and rainy season of 2011 we sampled ground active spiders using pitfall traps from high and low shade coffee agroecosystems (27 sites) and from forest (10 sites). On local scale, for each 20 m × 20 m site we measured leaf litter variables, invertebrate dry biomass, slope of the terrain and elevation, and management variables such as canopy cover, shade tree richness, shade tree density and proportion of Inga trees. At the landscape scale, we measured distance to the nearest forest and percent of forest in buffers of 500 m. Results show that agricultural management had a strong influence on spider richness and abundance. Across seasons, local spider richness and abundance had or tended to have higher values in the low-shade coffee. Spider richness and abundance were strongly in fl uenced by physiographic and local predictors and weakly by landscape predictors. Furthermore, predictors varied with seasonality, with slope of the terrain being the strongest predictor in the dry season and canopy cover being the strongest predictor in the rainy season. We conclude that ground active spiders in this coffee landscape are greatly in fl uenced by coffee management and local characteristics. eng

Con tecnología Koha