Logo CONACYTCONACYTECOSUR

el colegio de la frontera sur

Vista normal Vista MARC

Understanding soil respiration dynamics in temperate forests in northwestern Mexico

Tipo de material: Artículo
 en línea Artículo en línea Idioma: Inglés Tipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de soporte:
  • recurso en línea
Tema(s): Recursos en línea: En: Forests Volumen 14, número 9, artículo número 1763 (2023), páginas 1-14Resumen:
Inglés

Temperate mixed forests in Mexico are considered highly important ecosystems because of their high levels of biodiversity and capacity to store carbon. The aim of this study was to evaluate temporal and between-forest soil respiration (CO2 efflux) variability, and to assess the effect of vegetation diversity metrics on soil CO2 fluxes in mixed-uneven-aged forests in Durango, Northwestern Mexico. Soil CO2 efflux, soil moisture, and soil temperature were measured in three temperate forest types. A generalized linear model (GLM) was fitted to analyze the relationship between soil CO2 fluxes and stand variables, diversity metrics, soil moisture, and soil temperature. Furthermore, a two-way analysis of variance was used to assess the effect of forest type, month of the year, and their interaction on soil respiration. Annual average, minimum, and maximum soil CO2 efflux rate values were 3.81 (±2.94), 2.28 (±1.47), and 7.97 (±2.94) µmol m−² s−¹, respectively. Soil respiration was positively related to species richness, aboveground biomass, and quadratic mean diameter; however, forest type did not contribute to understanding the dynamics of soil CO2 fluxes. The results highlight the importance of seasonality, species diversity and aboveground biomass stocks to preserve the ecosystem processes driving soil respiration in temperate forests.

Número de sistema: 54404
Lista(s) en las que aparece este ítem: Producción Rocío Rodiles Hernández
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)

Acceso en línea sin restricciones

Temperate mixed forests in Mexico are considered highly important ecosystems because of their high levels of biodiversity and capacity to store carbon. The aim of this study was to evaluate temporal and between-forest soil respiration (CO2 efflux) variability, and to assess the effect of vegetation diversity metrics on soil CO2 fluxes in mixed-uneven-aged forests in Durango, Northwestern Mexico. Soil CO2 efflux, soil moisture, and soil temperature were measured in three temperate forest types. A generalized linear model (GLM) was fitted to analyze the relationship between soil CO2 fluxes and stand variables, diversity metrics, soil moisture, and soil temperature. Furthermore, a two-way analysis of variance was used to assess the effect of forest type, month of the year, and their interaction on soil respiration. Annual average, minimum, and maximum soil CO2 efflux rate values were 3.81 (±2.94), 2.28 (±1.47), and 7.97 (±2.94) µmol m−² s−¹, respectively. Soil respiration was positively related to species richness, aboveground biomass, and quadratic mean diameter; however, forest type did not contribute to understanding the dynamics of soil CO2 fluxes. The results highlight the importance of seasonality, species diversity and aboveground biomass stocks to preserve the ecosystem processes driving soil respiration in temperate forests. Inglés