Handbook of quantitative forest genetics / Editores: Lauren Fins, Sharon T. Friedman, Janet V. Brotschol
Fins, Lauren [editor] | Friedman, Sharon T [editor/a] | Brotschol, Janet V [editor/a].
Tipo de material: Libro impreso(a) Series Editor: Netherlands: Kluwer Academic Publishers, 1992Descripción: xvii, 403 páginas : mapas ; 24 centímetros.ISBN: 0792315685.Tema(s): Bosques | Genética vegetal | Estadística matemática | ManualesClasificación: 581.15 / H3 Nota de bibliografía: Incluye bibliografía e índice Número de sistema: 53058Contenidos:Mostrar Resumen:Tipo de ítem | Biblioteca actual | Colección | Signatura | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|
Libros |
Biblioteca Chetumal
Texto en configuración de biblioteca Chetumal |
Acervo General | 581.15 H3 | Disponible | ECO030007914 |
Incluye bibliografía e índice
Contents.. Preface.. Acknowledgements.. Chapter 1 Quantitative Genetics: Why Bother?.. Chapter 2 Fundamental Genetic Principles.. Chapter 3 Mating Designs.. Chapter 4 Field Test Design.. Chapter 5 Concepts of Selection and Gain Prediction.. Chapter 6 Computational Methods.. Chapter 7 Estimating Yield: Beyond Breeding Values.. Chapter 8 Quantitative Approaches to Decision-Making in Forest Genetics Programs.. Chapter 9 Developing Seed Transfer Zones.. Subject Index
This handbook was designed as a reference tool for forest geneticists, tree breeders and other tree improvement personnel, as well as a textbook for university courses and short-courses at the graduate level in quantitative genetics. The chapters focus on the decision points faced by quantitative geneticists and breeders in designing programs and analyzing data. Beginning with a justification for the use of quantitative genetics in decision making in tree improvement programs, the book continues with a brief presentation of fundamental principles, followed by discussions and evaluations of mating designs and field test designs, the use of best linear predictors to estimate breeding values, the use of computer programs in the analysis of variance for genetic information, the deployment of genetically improved stock for capturing gains, the use of economic models for program justification, and the development of seed transfer guidelines. eng