Beginning R: the statistical programming language / Mark Gardener
Por: Gardener, Mark [autor/a].
Tipo de material: Libro impreso(a) Series Editor: Indianapolis, Indiana: John Wiley and Sons, c2012Descripción: xxvii, 475 páginas : ilustraciones ; 24 centímetros.ISBN: 111816430X; 9781118164303.Tema(s): R (Lenguaje de programación para computadora) | Métodos estadísticos | Procesamiento de datos | Lenguajes de programación (Computadores electrónicos)Clasificación: 005.113 / G3 Nota de bibliografía: Incluye índice: páginas 461-475 Número de sistema: 51774Contenidos:Mostrar Resumen:Tipo de ítem | Biblioteca actual | Colección | Signatura | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|
Libros |
Biblioteca Campeche
Texto en la configuración de la biblioteca Campeche |
Acervo General | 005.113 G3 | Disponible | ECO040004853 |
Incluye índice: páginas 461-475
Introduction.. Chapter 1: Introducing R: What It Is and How to Get It.. Chapter 2: Starting Out: Becoming Familiar with R.. Chapter 3: Starting Out: Working With Objects.. Chapter 4: Data: Descriptive Statistics and Tabulation.. Chapter 5: Data: Distrib ution.. Chapter 6: Si mple Hypothesis Testing.. Chapter 7: Introduction to Graphical Analysis.. Chapter 8: Formula Notation and Complex Statistics.. Chapter 9: Manipulating Data and Extracting Components.. Chapter 10: Regression (Li near Modeling.. Chapter 11: More About Graphs.. Chapter 12: Writing Your Own Scripts: Beginning to Program.. Appendix: Answers to Exerci ses.. Index
While R is very flexible and powerful, it is unlike most of the computer programs you have used. In order to unlock its full potential, this book delves into the language, making it accessible so you can tackle even the most complex of data analysis tasks. Simple data examples are integrated throughout so you can explore the capabilities and versatility of R. Along the way, you'll also learn how to carry out a range of commonly used statistical methods, including Analysis of Variance and Linear Regression. By the end, you'll be able to effectively and efficiently analyze your data and present the results. Beginning R: -Discusses how to implement some basic statistical methods such as the t-test, correlation, and tests of association. -Explains how to turn your graphs from merely adequate to simply stunning. -Provides you with the ability to define complex analytical situations. -Demonstrates ways to make and rearrange your data for easier analysis. -Covers how to carry out basic regression as well as complex model building and curvilinear regression. -Shows how to produce customized functions and simple scripts that can automate your workflow. eng