Abstract
We previously reported beneficial effects of the probiotic strain Lactobacillus casei 393 in hindering colon carcinogenesis in a 1,2-dimethylhydrazine (DMH)-induced BALB/c mouse model of colon cancer. In the present study, we investigated the effect of preventive administration of L. casei 393 on the levels of selected pro- and anti-inflammatory circulating cytokines, as well as subpopulations of splenic T cells. The resulting experimental data on IFNγ, TNFα, IL-10, and colon histological features demonstrated that administration of L. casei 2 weeks before DMH treatment impaired the pro-inflammatory effect of DMH, while maintaining the levels of the three cytokines as well as colon histology; it also modulated splenic CD4+, CD8+, and NK T cell subpopulations. The preventive administration of L. casei to DMH-treated mice increased IL-17A synthesis and Treg percentages, further indicating a tumor-protecting role. Together, the results suggest that the colon-cancer-protective properties of L. casei 393 involve the dampening of inflammation through cytokine homeostasis and the maintenance of a healthy T cell subpopulation dynamic. For these reasons, probiotics such as L. casei may contribute to the health of the host as they promote optimal control of the immune response. Further, they may be used as prophylactic agents in combination with standard therapies against colon cancer.





Similar content being viewed by others
References
Yamagishi H, Kuroda H, Imai Y, Hiraishi H (2016) Molecular pathogenesis of sporadic colorectal cancers. Chin J Cancer 35:4. https://doi.org/10.1186/s40880-015-0066-y
Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442
Terzić J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(6):2101–2114.e5. https://doi.org/10.1053/j.gastro.2010.01.058
Liang T, Wang H, Zheng Y, Cao Y, Wu X, Zhou X, Dong S (2017) APC hypermethylation for early diagnosis of colorectal cancer: a meta-analysis and literature review. Oncotarget 8(28):46468–46479. https://doi.org/10.18632/oncotarget.17576
Le Marchand L (2009)Genome-wide association studies and colorectal cancer. Surg Oncol Clin N Am 18(4):663–668. https://doi.org/10.1016/j.soc.2009.07.004
Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, Purama RK, Dave JM, Vyas BRM (2013) Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 4(3):181–192. https://doi.org/10.4161/gmic.23919
Shida K, Nomoto K (2013) Probiotics as efficient immunopotentiators: translational role in cancer prevention. Indian J Med Res 138(5):808–814
Compare D, Nardone G (2014) The bacteria-hypothesis of colorectal cancer: pathogenetic and therapeutic implications. Transl Gastrointest Cancer 3(1):44–53. https://doi.org/10.3978/j.issn.2224-4778.2013.05.37
Hold GL (2016) Gastrointestinal microbiota and colon cancer. Dig Dis 34(3):244–250. https://doi.org/10.1159/000443358
Dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL, Peluzio MD (2017) Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res 37:1–19. https://doi.org/10.1016/j.nutres.2016.11.009
Han S, Gao J, Zhou Q, Liu S, Wen C, Yang X (2018) Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer Manag Res 10:199–206. https://doi.org/10.2147/CMAR.S153482
Sun J, Kato I (2016) Gut microbiota, inflammation and colorectal cancer. Genes Dis 3(2):130–143. https://doi.org/10.1016/j.gendis.2016.03.004
Mager LF, Wasmer MH, Rau TT, Krebs P (2016)Cytokine-induced modulation of colorectal cancer. Front Oncol 6:96. https://doi.org/10.3389/fonc.2016.00096
Krzystek-Korpacka M, Diakowska D, Kapturkiewicz B, Bębenek M, Gamian A (2013) Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening and surveillance. Cancer Lett 337(1):107–114. https://doi.org/10.1016/j.canlet.2013.05.033
Klampfer L (2011) Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets 11(4):451–464
Kim YW, Kim SK, Kim CS, Kim IY, Cho MY, Kim NK (2014) Association of serum and intratumoral cytokine profiles with tumor stage and neutrophil lymphocyte ratio in colorectal cancer. Anticancer Res 34(7):3481–3487
Bednarz-Misa I, Diakowska D, Krzystek-Korpacka M (2019) Local and systemic IL-7 concentration in gastrointestinal-tract cancers. Medicina (Kaunas) 55(6):262. https://doi.org/10.3390/medicina55060262
Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73. https://doi.org/10.1186/s12916-016-0623-5
Chong ES (2014) A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J Microbiol Biotechnol 30(2):351–374. https://doi.org/10.1007/s11274-013-1499-6
Andrade ME, Araújo RS, de Barros PA, Soares AD, Abrantes FA Generoso S de V(2015) The role of immunomodulators on intestinal barrier homeostasis in experimental models. Clin Nutr 34(6):1080–1087. Fernandes SO, Cardoso VN. https://doi.org/10.1016/j.clnu.2015.01.012
Irecta-Nájera CA, Del Rosario H-LM, Casas-Solís J, Castro-Félix P, Santerre A (2017) Protective effect of Lactobacillus casei on DMH-induced colon carcinogenesis in mice. Probiotics Antimicrob Proteins 9(2):163–171. https://doi.org/10.1007/s12602-017-9253-2
Pant N, Marcotte H, Brüssow H, Svensson L, Hammarström L (2007) Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies. BMC Microbiol 7(1):86. https://doi.org/10.1186/1471-2180-7-86
Castañeda Guillot C (2018) Probióticos, puesta al día: an update. Rev Cubana Pediatr. Rev Cubana Pediatr 90(2):286–298
Sidira M, Galanis A, Nikolaou A, Kanellaki M, Kourkoutas Y (2014) Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages. Food Control 42:315–320. https://doi.org/10.1016/j.foodcont.2014.02.024
NOM-062-ZOO-1999, Secretaria de Agricultura Ganadería, Desarrollo Rural, Pesca y Alimentación: Norma oficial mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio, Edited by Diario Oficial de la Federación 2001
Rosenberg DW, Giardina C, Tanaka T (2009) Mouse models for the study of colon carcinogenesis. Carcinogenesis 30(2):183–196. https://doi.org/10.1093/carcin/bgn267
Kiernan JA (2008) Histological and histochemical methods: theory and practice. Scion Publishing, UK
Lamoreaux L, Roederer M, Koup R (2006) Intracellular cytokine optimization and standard operating procedure. Nat Protoc 1(3):1507–1516. https://doi.org/10.1038/nprot.2006.268
Di Gennaro P, Gerlini G, Urso C, Sestini S, Brandani P, Pimpinelli N, Borgognoni L (2016) CD4+FOXP3+ T regulatory cells decrease and CD3+CD8+ T cells recruitment in TILs from melanoma metastases after electrochemotherapy. Clin Exp Metastasis 33(8):787–798. https://doi.org/10.1007/s10585-016-9814-x
Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, Saxami G, Ypsilantis P, Lampri ES, Simopoulos C, Kotsianidis I, Galanis A, Kourkoutas Y, Dimitrellou D, Chlichlia K (2016)Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS One 11(2):e0147960. https://doi.org/10.1371/journal.pone.0147960
Lenoir M, Del Carmen S, Cortes-Perez NG, Lozano-Ojalvo D, Muñoz-Provencio D, Chain F, Langella P, de Moreno de LeBlanc A, LeBlanc JG, Bermúdez-Humarán LG (2016)Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J Gastroenterol 51(9):862–873. https://doi.org/10.1007/s00535-015-1158-9
Zhu Y, Luo TM, Jobin C, Young HA (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309(2):119–127. https://doi.org/10.1016/j.canlet.2011.06.004
Hijová E, Szabadosova V, Štofilová J, Hrčková G (2013) Chemopreventive and metabolic effects of inulin on colon cancer development. J Vet Sci 14(4):387–393. https://doi.org/10.4142/jvs.2013.14.4.387
Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 11:104(50):19977–19982. https://doi.org/10.1073/pnas.0704620104
Gamallat Y, Meyiah A, Kuugbee ED, Hago AM, Chiwala G, Awadasseid A, Bamba D, Zhang X, Shang X, Luo F, Xin Y (2016)Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother 83:536–541. https://doi.org/10.1016/j.biopha.2016.07.001
Waldner MJ, Neurath MF (2014) Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin Immunol 26(1):75–79. https://doi.org/10.1016/j.smim.2013.12.003
Del Carmen S, de Moreno de LeBlanc A, Levit R, Azevedo V, Langella P, Bermúdez-Humarán LG, LeBlanc JC (2017)Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol 42:122–129. https://doi.org/10.1016/j.intimp.2016.11.017
Ju H, Xing W, Yang J, Zheng Y, Jia X, Zhang B, Ren H (2016) An effective cytokine adjuvant vaccine induces autologous T-cell response against colon cancer in an animal model. BMC Immunol 17(1):31. https://doi.org/10.1186/s12865-016-0172-x
Dasari S, Kathera C, Janardhan A, Praveen Kumar A, Viswanath B (2017) Surfacing role of probiotics in cancer prophylaxis and therapy: a systematic review. Clin Nutr 36(6):1465–1472. https://doi.org/10.1016/j.clnu.2016.11.017
Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES, Gorter A (2015) Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. OncoImmunology 4(1):e984539. https://doi.org/10.4161/2162402X.2014.984539
Wakita D, Sumida K, Iwakura Y, Nishikawa H, Ohkuri T, Chamoto K, Kitamura H, Nishimura T (2010)Tumor-infiltratingIL-7-producing γδ T cells support the progression of tumor by promoting angiogenesis. Eur J Immunol 40(7):1927–1937. https://doi.org/10.1002/eji.200940157
Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B (2011)IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 407(2):348–354. https://doi.org/10.1016/j.bbrc.2011.03.021
Brasseit J, Althaus-Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, Dolowschiak T, Li H, Finke D, Hardt WD, McCoy KD, Macpherson AJ, Corazza N, Noti M, Mueller C (2016) CD4 Tcells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol 9(3):689–701. https://doi.org/10.1038/mi.2015.93
Wasilewska E, Zlotkowska D (2015)Bifidobacterium longum strain change CD4 and CD8 T cells profile in inflammatory bowel disease induced in mice (MPF6P. 663). J Immunol 194(S1):202.21
Shibutani M, Maeda K, Nagahara H, Fukuoka T, Nakao S, Matsutani S, Hirakawa K, Ohira M (2017) The prognostic significance of the tumor-infiltrating programmed cell Death-1+ to CD8+ lymphocyte ratio in patients with colorectal cancer. Anticancer Res 37(8):4165–4172. https://doi.org/10.21873/anticanres.11804
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014)PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. https://doi.org/10.1038/nature13954
Kang CW, Dutta A, Chang LY, Mahalingam J, Lin YC, Chiang JM, Hsu CY, Huang CT, Su WT, Chu YY, Lin CY (2015) Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci Rep 5:15659. https://doi.org/10.1038/srep15659
Perdigón G, de Moreno de LeBlanc A, Valdez J, Rachid M (2002) Role of yoghurt in the prevention of colon cancer. Eur J Clin Nutr 56(S3):S65–S68. https://doi.org/10.1038/sj.ejcn.1601490
Lan B, Zhang J, Lu D, Li W (2016) Generation of cancer-specific CD8(+) CD69(+) cells inhibits colon cancer growth. Immunobiology 221(1):1–5. https://doi.org/10.1016/j.imbio.2015.08.010
Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat Rev Immunol 11(10):645–657. https://doi.org/10.1038/nri3044
Tallerico R, Todaro M, Di Franco S, Maccalli C, Garofalo C, Sottile R, Palmieri C, Tirinato L, Pangigadde PN, La Rocca R, Mandelboim O, Stassi G, Di Fabrizio E, Parmiani G, Moretta A, Dieli F, Kärre K, Carbone E (2013) Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol 190(5):2381–2390. https://doi.org/10.4049/jimmunol.1201542
Gunawardene A, Dennett E, Larsen P (2019) Prognostic value of multiple cytokine analysis in colorectal cancer: a systematic review. J Gastrointest Oncol 10(1):134–143. https://doi.org/10.21037/jgo.2018.07.11
Shimaoka H, Takeno S, Maki K, Sasaki T, Hasegawa S, Yamashita Y (2017) A cytokine signal inhibitor for rheumatoid arthritis enhances cancer metastasis via depletion of NK cells in an experimental lung metastasis mouse model of colon cancer. Oncol Lett 14(3):3019–3027. https://doi.org/10.3892/ol.2017.6473
Kryczek I, Wei S, Szeliga W, Vatan L, Zou W (2009) Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114:357–359. https://doi.org/10.1182/blood-2008-09-177360
Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, Nagase H, Nishimura J, Yamamoto H, Takiguchi S, Tanoue T, Suda W, Morita H, Hattori M, Honda K, Mori M, Doki Y, Sakaguchi S (2016) Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22(6):679–684. https://doi.org/10.1038/nm.4086
Olguín JE, Medina-Andrade I, Molina E, Vázquez A, Pacheco-Fernández T, Saavedra R, Pérez-Plasencia C, Chirino YI, Vaca-Paniagua F, Arias-Romero LE, Gutierrez-Cirlos EB, León-Cabrera SA, Rodriguez-Sosa M, Terrazas LI (2018) Early and partial reduction in CD4+Foxp3+ regulatory T cells during colitis-associated colon cancer induces CD4+ and CD8+ T Cell activation inhibiting tumorigenesis. J Cancer 9(2):239–249. https://doi.org/10.7150/jca.21336
Chaudhary B, Elkord E (2016) Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel) 4(3):28. https://doi.org/10.3390/vaccines4030028
Zhang X, Kelaria S, Kerstetter J, Wang J (2015) The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest oncol 6(3):307–313. https://doi.org/10.3978/j.issn.2078-6891.2015.017
Acknowledgments
Our special thanks to M.C. Veronica Carolina Rosas Espinoza for her guidance with statistical analyses. We are grateful to Claudia Copeland, Ph.D., from Carpe Diem Biomedical Writing and Editing, for professional English editing of the manuscript.
Funding
This study was supported by fundings from the P3e and Research (# 249947) Programs from the University of Guadalajara, México, and PFCE-SEP (Programa de Fortalecimiento de la Calidad Educativa- Secretaria de la Educación Pública).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical Approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed, and all procedures performed in studies involving animals were conducted in accordance with the ethical standards of the University of Guadalajara.
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Casas-Solís, J., Huizar-López, M., Irecta-Nájera, C. et al. Immunomodulatory Effect of Lactobacillus casei in a Murine Model of Colon Carcinogenesis . Probiotics & Antimicro. Prot. 12, 1012–1024 (2020). https://doi.org/10.1007/s12602-019-09611-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12602-019-09611-z