Vista normal Vista MARC

Effect of microclimate on the mass emergence of hypothenemus hampei in coffee grown under shade of trees and in full sun exposure

García Méndez, Valentina [autora] | González Gómez, Rebeca [autora] | Toledo, Jorge [autor] | Valle Mora, Javier Francisco [autor] | Barrera, Juan F [autor].
Tipo de material: Artículo
 en línea Artículo en línea Tipo de contenido: Texto Tipo de medio: Computadora Tipo de portador: Recurso en líneaTema(s): Broca del cafeto | Microclima | Coffea canephora | Árboles de sombra | Caficultura | Control de plagasTema(s) en inglés: Hypothenemus hampei | Microclimate | Coffea canephora | Shade trees | Coffee production | Pest controlDescriptor(es) geográficos: Alianza, Cacahoatán (Chiapas, México) Nota de acceso: Acceso en línea sin restricciones En: Insects. Volumen 15, número 2, 124 (February 2024), páginas 1-18. --ISSN: 2075-4450Número de sistema: 64492Resumen:
Inglés

The rainfall regime has a significant impact on the microclimate and mass emergence of the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) (CBB). Little is known, however, about the shade tree–microclimate–CBB mass emergence interaction. The objective of the present study was to compare the effect of microclimate on the mass emergence of CBB in a full sun-exposed plot with a plot shaded by trees. The experiment was conducted on a Robusta coffee farm in southern Chiapas, Mexico. In each plot, 18 traps baited with an alcohol mixture were installed to capture flying females, collecting caught individuals every hour from 8:00 to 18:00 h. A meteorological station recorded several microclimatic variables on 13 weekly sampling dates from February to May 2022. Significantly more CBB females were captured in the shaded plot. The largest number of CBB captures was recorded between 14:00 and 16:00 h for the shade plot and between 15:00 and 17:00 h for the sun-exposed plot. The mass emergence of CBB showed a positive association with precipitation, dew point, and wind speed samples and a negative association with maximum air temperature, average relative humidity, ultraviolet radiation, wind speed, and equilibrium moisture content. Our observations show that the relationship between shade trees, microclimate, and mass emergence of CBB is complex and that its study helps us to gain deeper insight into CBB bioecology and advance control techniques against this important pest.

Recurso en línea: https://doi.org/10.3390/insects15020124
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Estado Fecha de vencimiento Código de barras
Artículos Biblioteca Electrónica
Recursos en línea (RE)
ECOSUR Recurso digital ECO400000644492

Acceso en línea sin restricciones

The rainfall regime has a significant impact on the microclimate and mass emergence of the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) (CBB). Little is known, however, about the shade tree–microclimate–CBB mass emergence interaction. The objective of the present study was to compare the effect of microclimate on the mass emergence of CBB in a full sun-exposed plot with a plot shaded by trees. The experiment was conducted on a Robusta coffee farm in southern Chiapas, Mexico. In each plot, 18 traps baited with an alcohol mixture were installed to capture flying females, collecting caught individuals every hour from 8:00 to 18:00 h. A meteorological station recorded several microclimatic variables on 13 weekly sampling dates from February to May 2022. Significantly more CBB females were captured in the shaded plot. The largest number of CBB captures was recorded between 14:00 and 16:00 h for the shade plot and between 15:00 and 17:00 h for the sun-exposed plot. The mass emergence of CBB showed a positive association with precipitation, dew point, and wind speed samples and a negative association with maximum air temperature, average relative humidity, ultraviolet radiation, wind speed, and equilibrium moisture content. Our observations show that the relationship between shade trees, microclimate, and mass emergence of CBB is complex and that its study helps us to gain deeper insight into CBB bioecology and advance control techniques against this important pest. eng

Con tecnología Koha