Vista normal Vista MARC

Comparison of ground release and drone-mediated aerial release of Aedes aegypti sterile males in Southern Mexico: efficacy and challenges

Marina Fernández, Carlos Félix [autor] | Liedo Fernández, Pablo [autor] | Bond Compeán, Juan Guillermo [autor] | Osorio, Adriana R [autora] | Valle Mora, Javier Francisco [autor] | Angulo Kladt, Roberto [autor] | Gómez Simuta, Yeudiel [autor/a] | Fernández Salas, Ildefonso [autor] | Dor Roques, Ariane Liliane Jeanne [autora] | Williams, Trevor [autor].
Tipo de material: Artículo
 en línea Artículo en línea Tipo de contenido: Texto Tipo de medio: Computadora Tipo de portador: Recurso en líneaTema(s): Aedes aegypti | Insectos vectores | Técnica del insecto estéril | Control de insectosTema(s) en inglés: Aedes aegypti | Insects as carriers of disease | Sterile insect technique | Insect controlDescriptor(es) geográficos: Chiapas (México) Nota de acceso: Acceso en línea sin restricciones En: Insects. Volumen 13, número 347 (2022), páginas 1-15. --ISSN: 2075-4450Número de sistema: 62469Resumen:
Inglés

Sterile males of Aedes aegypti were released once a week for 8 weeks to evaluate the dispersal efficiency of ground and aerial drone release methods in a rural village of 26 Ha in southern Mexico. Indoor and outdoor BG-Sentinel traps were placed in 13–16 houses distributed throughout the village. The BG traps were activated 48 h after the release of the sterile males and functioned for a 24 h period following each release. Over the 8-week period of simultaneous ground and aerial releases, an average of 85,117 ± 6457 sterile males/week were released at ground level and 86,724 ± 6474 sterile males/week were released using an aerial drone. The ground release method resulted in higher numbers of captured males (mean = 5.1 ± 1.4, range 1.1–15.7 sterile males/trap) compared with the aerial release method (mean = 2.6 ± 0.8, range 0.5–7.3 sterile males/trap) (p < 0.05). Similarly, the prevalence of traps that captured at least one sterile male was significantly higher for ground release compared to the aerial release method (p < 0.01). The lower numbers of sterile males captured in the aerial release method could be due to mortality or physical injury caused by the chilling process for immobilization, or the compaction of these insects during transport and release. However, aerial releases by a two-person team distributed insects over the entire village in just 20 min, compared to ~90 min of work for a five-person team during the ground release method. Ground release also resulted in higher aggregations of males and some villagers reported feeling discomfort from the presence of large numbers of mosquitoes in and around their houses. We conclude that modifications to the handling and transport of sterile males and the design of containers used to store males are required to avoid injury and to improve the efficiency of aerial releases for area-wide SIT-based population suppression programs targeted at mosquito vectors of human disease.

Recurso en línea: https://www.mdpi.com/2075-4450/13/4/347
Lista(s) en las que aparece este ítem: Bibliografía DEAMP
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Estado Fecha de vencimiento Código de barras
Artículos Biblioteca Electrónica
Recursos en línea (RE)
ECOSUR Recurso digital ECO400000062469

Acceso en línea sin restricciones

Sterile males of Aedes aegypti were released once a week for 8 weeks to evaluate the dispersal efficiency of ground and aerial drone release methods in a rural village of 26 Ha in southern Mexico. Indoor and outdoor BG-Sentinel traps were placed in 13–16 houses distributed throughout the village. The BG traps were activated 48 h after the release of the sterile males and functioned for a 24 h period following each release. Over the 8-week period of simultaneous ground and aerial releases, an average of 85,117 ± 6457 sterile males/week were released at ground level and 86,724 ± 6474 sterile males/week were released using an aerial drone. The ground release method resulted in higher numbers of captured males (mean = 5.1 ± 1.4, range 1.1–15.7 sterile males/trap) compared with the aerial release method (mean = 2.6 ± 0.8, range 0.5–7.3 sterile males/trap) (p < 0.05). Similarly, the prevalence of traps that captured at least one sterile male was significantly higher for ground release compared to the aerial release method (p < 0.01). The lower numbers of sterile males captured in the aerial release method could be due to mortality or physical injury caused by the chilling process for immobilization, or the compaction of these insects during transport and release. However, aerial releases by a two-person team distributed insects over the entire village in just 20 min, compared to ~90 min of work for a five-person team during the ground release method. Ground release also resulted in higher aggregations of males and some villagers reported feeling discomfort from the presence of large numbers of mosquitoes in and around their houses. We conclude that modifications to the handling and transport of sterile males and the design of containers used to store males are required to avoid injury and to improve the efficiency of aerial releases for area-wide SIT-based population suppression programs targeted at mosquito vectors of human disease. eng

Con tecnología Koha