Vista normal Vista MARC

Using satellite estimates of aboveground biomass to assess carbon stocks in a mixed-management, semi-deciduous tropical forest in the Yucatan Peninsula

George Chacón, Stephanie P [autora] | Milodowski, David T [autor] | Dupuy Rada, Juan Manuel [autor] | Mas, Jean François [autor] | Williams, Mathew [autor] | Castillo Santiago, Miguel Ángel | Hernández Stefanoni, José Luis.
Tipo de material: Artículo
 en línea Artículo en línea Tipo de contenido: Texto Tipo de medio: Computadora Tipo de portador: Recurso en líneaTema(s): Ordenación forestal | Biomasa aérea | Biomasa forestal | Sensores remotos | Lidar | Aprendizaje automático (Inteligencia artificial) | Captura de carbono | Bosques tropicalesTema(s) en inglés: Forest management | Aboveground biomass | Forest biomass | Remote sensing | Lidar | Machine learning | Carbon sequestration | Tropical forestsDescriptor(es) geográficos: Yucatán (Península) (México) Nota de acceso: Disponible para usuarios de ECOSUR con su clave de acceso En: Geocarto International. Volumen 37, número 25 (2022), páginas 7659–7680. --ISSN: 1752-0762Número de sistema: 61534Resumen:
Inglés

Information on the spatial distribution of forest aboveground biomass (AGB) and its uncertainty is important to evaluate management and conservation policies in tropical forests. However, the scarcity of field data and robust protocols to propagate uncertainty prevent a robust estimation through remote sensing. We upscaled AGB from field data to LiDAR, and to landscape scale using Sentinel-2 and ALOS-PALSAR through machine learning, propagated uncertainty using a Monte Carlo framework and explored the relative contributions of each sensor. Sentinel-2 outperformed ALOS-PALSAR (R² = 0.66, vs 0.50), however, the combination provided the best fit (R² = 0.70). The combined model explained 49% of the variation comparing against plots within the calibration area, and 17% outside, however, 94% of observations outside calibration area fell within the 95% confidence intervals. Finally, we partitioned the distribution of AGB in different management and conservation categories for evaluating the potential of different strategies for conserving carbon stock.

Recurso en línea: https://doi.org/10.1080/10106049.2021.1980619
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Estado Fecha de vencimiento Código de barras
Artículos Biblioteca Electrónica
Recursos en línea (RE)
ECOSUR Recurso digital ECO400000061534

Disponible para usuarios de ECOSUR con su clave de acceso

Information on the spatial distribution of forest aboveground biomass (AGB) and its uncertainty is important to evaluate management and conservation policies in tropical forests. However, the scarcity of field data and robust protocols to propagate uncertainty prevent a robust estimation through remote sensing. We upscaled AGB from field data to LiDAR, and to landscape scale using Sentinel-2 and ALOS-PALSAR through machine learning, propagated uncertainty using a Monte Carlo framework and explored the relative contributions of each sensor. Sentinel-2 outperformed ALOS-PALSAR (R² = 0.66, vs 0.50), however, the combination provided the best fit (R² = 0.70). The combined model explained 49% of the variation comparing against plots within the calibration area, and 17% outside, however, 94% of observations outside calibration area fell within the 95% confidence intervals. Finally, we partitioned the distribution of AGB in different management and conservation categories for evaluating the potential of different strategies for conserving carbon stock. eng

Con tecnología Koha