Vista normal Vista MARC

Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams

Espinoza Toledo, Andrea [autora] | Mendoza Carranza, Manuel [autor] | Castillo Uzcanga, María Mercedes [autora] | Barba Macías, Everardo [autor] | Capps, Krista A [autora].
Tipo de material: Artículo ArtículoTipo de contenido: Texto Tipo de medio: Computadora Tipo de portador: Recurso en líneaTema(s): Macroinvertebrados | Bosques ribereños | Deforestación | Isótopos estables | Calidad del agua | Variables ambientales | Nicho (Ecología)Tema(s) en inglés: Macroinvertebrates | Riparian forests | Deforestation | Stable isotopes | Water quality | Environmental variables | Niche (Ecology)Descriptor(es) geográficos: Pichucalco (Chiapas, México) Nota de acceso: Disponible para usuarios de ECOSUR con su clave de acceso En: Science of the Total Environment. volumen 757, artículo número 143972 (February 2021), páginas 1-14. --ISSN: 1879-1026Número de sistema: 60585Resumen:
Inglés

Land use change threatens the ecological integrity of tropical rivers and streams; however, few studies have simultaneously analyzed the taxonomic and functional responses of tropical macroinvertebrates to riparian forest conversion. Here, we used community structure, functional diversity, and stable isotope analyses to assess the impacts of riparian deforestation on macroinvertebrate communities of streams in southern Mexico. Monthly sampling during the dry season was conducted in streams with riparian forest (forest streams), and in streams with pasture dominating the riparian vegetation (pasture streams). Samples were collected for water quality (physical-chemical variables, nutrient concentrations, and total suspended solids), organic matter (leaf litter abundance and algal biomass), and macroinvertebrate abundance and diversity. Higher temperature, conductivity, suspended solids, and chlorophyll a were detected in pasture streams, while nitrate concentrations and leaf litter biomass were greater in forest streams. Macroinvertebrate density was higher in pasture sites, while no differences in taxonomic diversity and richness were found between land uses. Functional evenness was greater in forest streams, while richness and divergence were similar between land uses, despite differences in taxonomic composition. Environmental variables were associated with taxa distribution but not with functional traits, suggesting current conditions still promote redundancy in ecological function. Isotopic analyses indicated consumers in pasture streams were enriched in ¹³C and ¹5N relative to forest streams, potentially reflecting the higher algal biomass documented in pasture systems. Isotopic niches were broader and more overlapped in pasture streams, indicating more generalist feeding habits. No significant losses of taxonomic or functional diversity were detected in pasture streams. However, changes in trophic ecology suggest landscape-level processes are altering macroinvertebrate feeding habits in streams. The changes we observed in habitat, water quality, and macroinvertebrate community were related to the removal of the riparian vegetation, suggesting the structure and function of the focal systems would benefit from riparian restoration.

Recurso en línea: https://www-sciencedirect-com.ezproxy.ecosur.mx/science/article/pii/S0048969720375033?via%3Dihub
Lista(s) en las que aparece este ítem: Agua
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Estado Fecha de vencimiento Código de barras
Artículos Biblioteca Electrónica
Recursos en línea (RE)
ECOSUR Recurso digital ECO400000060585

Disponible para usuarios de ECOSUR con su clave de acceso

Land use change threatens the ecological integrity of tropical rivers and streams; however, few studies have simultaneously analyzed the taxonomic and functional responses of tropical macroinvertebrates to riparian forest conversion. Here, we used community structure, functional diversity, and stable isotope analyses to assess the impacts of riparian deforestation on macroinvertebrate communities of streams in southern Mexico. Monthly sampling during the dry season was conducted in streams with riparian forest (forest streams), and in streams with pasture dominating the riparian vegetation (pasture streams). Samples were collected for water quality (physical-chemical variables, nutrient concentrations, and total suspended solids), organic matter (leaf litter abundance and algal biomass), and macroinvertebrate abundance and diversity. Higher temperature, conductivity, suspended solids, and chlorophyll a were detected in pasture streams, while nitrate concentrations and leaf litter biomass were greater in forest streams. Macroinvertebrate density was higher in pasture sites, while no differences in taxonomic diversity and richness were found between land uses. Functional evenness was greater in forest streams, while richness and divergence were similar between land uses, despite differences in taxonomic composition. Environmental variables were associated with taxa distribution but not with functional traits, suggesting current conditions still promote redundancy in ecological function. Isotopic analyses indicated consumers in pasture streams were enriched in ¹³C and ¹5N relative to forest streams, potentially reflecting the higher algal biomass documented in pasture systems. Isotopic niches were broader and more overlapped in pasture streams, indicating more generalist feeding habits. No significant losses of taxonomic or functional diversity were detected in pasture streams. However, changes in trophic ecology suggest landscape-level processes are altering macroinvertebrate feeding habits in streams. The changes we observed in habitat, water quality, and macroinvertebrate community were related to the removal of the riparian vegetation, suggesting the structure and function of the focal systems would benefit from riparian restoration. eng

Con tecnología Koha