CFD Simulations of Multiphase Flows: interaction of miscible liquids with different temperatures
Rodríguez Ocampo, Paola Elizabeth [autora] | Ring, Michael [autor] | Hernández Fontes, Jassiel Vladimir [autor] | Alcérreca Huerta, Juan Carlos [autor] | Mendoza, Edgar [autor] | Silva, Rodolfo [autor].
Tipo de material: Artículo en línea Tema(s): Dinámica de fluidos computacional | Soporte lógico libre | Temperatura del aguaTema(s) en inglés: Computational fluid dynamics | Open source software | Water temperatureNota de acceso: Acceso en línea sin restricciones En: Water. Volumen 12, número 9, 2581 (2020), páginas 1-18. --ISSN: 2073-4441Número de sistema: 9809Resumen:Tipo de ítem | Biblioteca actual | Colección | Signatura | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|
Artículos | Biblioteca Electrónica Recursos en línea (RE) | ECOSUR | Recurso digital | ECO400098096004 |
Acceso en línea sin restricciones
The incorporation of new equations to extend the applicability of open-source computational fluid dynamics (CFD) software according to the user's needs must be complemented with code verification and validation with a representative case. This paper presents the development and validation of an OpenFOAM®-based solver suitable for simulating multiphase fluid flow considering three fluid phases with different densities and temperatures, i.e., two miscible liquids and air. A benchmark "dam-break" experiment was performed to validate the solver. Ten thermistors measured temperature variations in different locations of the experimental model and the temperature time series were compared against those of numerical probes in analogous locations. The accuracy of the temperature field assessment considered three different turbulence models: (a) zero-equation, (b) k-omega (Reynolds averaged simulation; RAS), and (c) large eddy simulation (LES). The simulations exhibit a maximum time-average relative and absolute errors of 9.3% and 3.1 K, respectively; thus, the validation tests proved to achieve an adequate performance of the numerical model. The solver developed can be applied in the modeling of thermal discharges into water bodies. eng
Disponible en línea
Adobe Acrobat profesional 6.0 o superior