Potential of different optical and SAR data in forest and land cover classification to support REDD+ MRV
Sirro, Laura [autora] | Häme, Tuomas [autor] | Rauste, Yrjö [autor] | Kilpi, Jorma [autor] | Hämäläinen, Jarno [autor] | Gunia, Katja [autor/a] | De Jong, Bernardus Hendricus Jozeph [autor] | Paz Pellat, Fernando [autor].
Tipo de material: Artículo en línea Tipo de contenido: Texto Tipo de medio: Computadora Tipo de portador: Recurso en líneaTema(s): Reducción de Emisiones por Deforestación y Degradación Forestal | Calidad de zona forestal | Cobertura de suelos | Imágenes por satélitesTema(s) en inglés: Reducing Emissions from Deforestation and Forest Degradation | Forest site quality | Land cover | Satellite imageryDescriptor(es) geográficos: Chiapas (México) Nota de acceso: Acceso en línea sin restricciones En: Remote Sensing. Volumen 10, número 6, e-942 (June 2018), páginas 1-26. --ISSN: 2072-4292Número de sistema: 58896Resumen:Tipo de ítem | Biblioteca actual | Colección | Signatura | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|
Artículos | Biblioteca Electrónica Recursos en línea (RE) | ECOSUR | Recurso digital | ECO400588965997 |
Acceso en línea sin restricciones
The applicability of optical and synthetic aperture radar (SAR) data for land cover classification to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) MRV (measuring, reporting and verification) services was tested on a tropical to sub-tropical test site. The 100 km by 100 km test site was situated in the State of Chiapas in Mexico. Land cover classifications were computed using RapidEye and Landsat TM optical satellite images and ALOS PALSAR L-band and Envisat ASAR C-band images. Identical sample plot data from Kompsat-2 imagery of one-metre spatial resolution were used for the accuracy assessment. The overall accuracy for forest and non-forest classification varied between 95% for the RapidEye classification and 74% for the Envisat ASAR classification. For more detailed land cover classification, the accuracies varied between 89% and 70%, respectively. A combination of Landsat TM and ALOS PALSAR data sets provided only 1% improvement in the overall accuracy. The biases were small in most classifications, varying from practically zero for the Landsat TM based classification to a 7% overestimation of forest area in the Envisat ASAR classification. Considering the pros and cons of the data types, we recommend optical data of 10 m spatial resolution as the primary data source for REDD MRV purposes. The results with L-band SAR data were nearly as accurate as the optical data but considering the present maturity of the imaging systems and image analysis methods, the L-band SAR is recommended as a secondary data source. The C-band SAR clearly has poorer potential than the L-band but it is applicable in stratification for a statistical sampling when other image types are unavailable. eng