Imagen de portada de Amazon
Imagen de Amazon.com
Vista normal Vista MARC

Bayesian methods for ecology Michael A. McCarthy

Tipo de material: Libro
 impreso(a) 
 
  y electrónico  
  Libro impreso(a) y electrónico Idioma: Inglés Detalles de publicación: Cambridge, UK Cambridge University Press c2007Descripción: xiii, 296 páginas fotografías, retratos 23 centímetrosISBN:
  • 0521615593
  • 9780521615594
Tema(s): Formatos físicos adicionales: Bayesian methods for ecologyClasificación:
  • 577.0727 M3
Recursos en línea: Formatos físicos adicionales disponibles:
  • Disponible en línea
Indice:Mostrar
Resumen:
Inglés

The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology.

Número de sistema: 57736
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Estado Código de barras
Libros Biblioteca Electrónica Recursos en línea (RE) Acervo General Recurso digital ECO400577367984
Libros Biblioteca San Cristóbal Acervo General (AG) Acervo General 577.0727 M3 Disponible ECO010018494

Incluye bibliografía: páginas 282-292 e índice: páginas 293-296

Preface.. 1 Introduction.. Example 1: Logic in determining the presence or absence of a species.. Example 2: Estimation of a mean.. Concluding remarks.. 2 Critiques of statistical methods.. Introduction.. Sex ratio of koalas.. Null hypothesis significance testing.. Information-theoretic methods.. Bayesian methods.. Estimating effect sizes.. Concluding remarks.. 3 Analysing averages and frequencies.. The average.. The Poisson distribution with extra variation.. Estimating differences.. Required sample sizes when estimating means.. Estimating proportions.. Multinomial models.. Concluding remarks.. 4 How good are the models?.. How good is the fit?.. How complex is the model?.. Combining measures of fit and simplicity.. The Bayes factor and model probabilities.. Evaluating the shape of distributions.. Concluding remarks.. 5 Regression and correlation.. Regression.. Correlation.. Concluding remarks.. 6 Analysis of variance.. One-way ANOVA.. Coding of variables.. Fixed and random factors.. Two-way ANOVA.. Interaction terms in ANOVA.. Variance partitioning.. An example of ANOVA: effects of vegetation removal on a marsupial.. Analysis of covariance.. ANCOVA: a case study.. Log-linear models for contingency tables.. Concluding remarks.. Case Studies.. 7 Mark-recapture analysis.. Methods.. 8 Effects of marking frogs.. Logistic regression.. Model A.. Models B and C.. 9 Population dynamics.. Mountain pygmy possums.. 10 Subjective priors.. Eliciting probabilities.. Handling differences of opinion.. Using subjective judgements.. Using the consensus of experts.. Representing differences of opinion with subjective priors.. Using Bayesian networks to represent expert opinion.. Concluding remarks.. 11 Conclusion.. Prior information.. Flexible statistical models.. Intuitive results.. Bayesian methods make us think.. A Bayesian future for ecology.. Appendices.. A A tutorial for running WinBUGS.. A summary of steps for running WinBUGS..

The steps in more detail.. How to write WinBUGS code.. B Probability distributions.. Discrete random variables.. Continuous random variables.. Univariate discrete distributions.. Univariate continuous distributions.. Multivariate discrete distributions.. Multivariate continuous distributions.. Conjugacy.. C MCMC algorithms.. Why does it work?.. References.. Index

Disponible para usuarios de ECOSUR con su clave de acceso

The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology. Inglés

Disponible en línea

Disponible en formato PDF